Article ID Journal Published Year Pages File Type
294220 Marine Structures 2015 21 Pages PDF
Abstract

•The methods studied give valuable information on the output uncertainty.•Specific ship design features can be linked to the operational risk.•The output uncertainty is small relative to the input uncertainty.•The gained information is very valuable for both the analyst and the decision maker.

Military ocean patrol vessels (OPVs) are today an increasingly common type of naval ship. To facilitate the wide range of tasks with small crews, OPVs represent several ship design compromises between, for example, survivability, redundancy and technical endurance, and some of these compromises are new to military ships.The aim of this study is to examine how the design risk control-options in relation to survivability, redundancy and technical endurance can be linked to the operational risk in a patrol and surveillance scenario. The ship operation for a generic OPV, including the actions of the threat, is modelled with a Bayesian network describing the scenario and the dependency among different influences.The scenario is described with expert data collected from subject matter experts. The approach includes an analysis of uncertainty using Monte Carlo analysis and numerical derivative analysis.The results show that it is possible to link the performance of specific ship design features to the operational risk. Being able to propagate the epistemic uncertainties through the model is important to understand how the uncertainty in the input affects the output and the output uncertainty for the studied case is small relative to the input uncertainty. The study shows that linking different ship design features for aspects such as survivability, redundancy and technical endurance to the operational risk gives important information for the ship design decision-making process.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,