Article ID Journal Published Year Pages File Type
294760 Mining Science and Technology (China) 2009 6 Pages PDF
Abstract

In this study, analyses are conducted on the information features of a construction site, a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area, on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image, we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next, a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis, a classification is conducted selectively on three principal component bands with the most information. Finally, through training and experimenting with the samples, a better three-layered BP neural network was established to classify the SAR image. The results show that, assisted by texture information, the neural network classification improved the accuracy of SAR image classification by 14.6%, compared with a classification by maximum likelihood estimation without texture information.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology