Article ID Journal Published Year Pages File Type
295588 NDT & E International 2009 11 Pages PDF
Abstract

This paper presents new results of our continuous effort to develop a computer-aided radiographic weld inspection system. The focus of this study is on improving accuracy by feature selection. To this end, we propose two versions of ant colony optimization (ACO)-based algorithms for feature selection and show their effectiveness to improve the accuracy in detecting weld flaws and the accuracy in classifying weld flaw types. The performances of ACO-based methods are compared with that of no feature selection and that of sequential forward floating selection, which is a known good feature selection method. Four different classifiers, including nearest mean, k-nearest neighbor, fuzzy k-nearest neighbor, and center-based nearest neighbor, are employed to carry out the tasks of weld flaw identification and weld flaw type classification.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,