Article ID Journal Published Year Pages File Type
296655 Nuclear Engineering and Design 2014 9 Pages PDF
Abstract

Thermal stratification and mixing under single- and two-phase flow natural convection are studied experimentally in relation to the safety of nuclear reactors. Flow structure and temperature distribution were measured for a rod bundle with axially distributed heat flux wherein the upper parts of the heaters are heated and the lower parts are unheated. In this scenario, under conditions of single-phase flow, thermal stratification is quite appreciable. A drastic temperature change was observed at the interface of thermal stratification. In the heated region, upward flow occurred in the rod bundle and downward flow occurred at the peripheral region of the rod bundle. As the heat flux increased, radial mixing was observed between subchannels in the rod bundle. At the interface of thermal stratification, however, almost no mixing was observed. Under conditions of boiling two-phase flow, on the other hand, thermal stratification also occurred but mixing at the interface of thermal stratification was promoted due to agitation of flow induced by bubbles. As the heat flux increased and the void fraction in the heated section increased, the interface of thermal stratification gradually advanced toward the unheated section.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,