Article ID Journal Published Year Pages File Type
297753 Nuclear Engineering and Design 2010 7 Pages PDF
Abstract

A potential cause of thermal fatigue failures in energy cooling systems is identified with cyclic stresses imposed on a piping system. These are generated due to temperature changes in regions where cold and hot flows are intensively mixed together. A typical situation for such mixing appears in turbulent flow through a T-junction, which is investigated here using Large-Eddy Simulations (LES). In general, LES is well capable in capturing the mixing phenomena and accompanied turbulent flow fluctuations in a T-junction. An assessment of the accuracy of LES predictions is made for the applied Vreman subgrid-scale model through a direct comparison with the available experimental results. In particular, an estimation of the minimal mesh-resolution requirements for LES is examined on the basis of the complementary RANS simulations. This estimation is based on the characteristics turbulent scales (e.g., Taylor micro-scale) that can be computed from LES or RANS simulations.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,