Article ID Journal Published Year Pages File Type
298060 Nuclear Engineering and Design 2010 7 Pages PDF
Abstract

The burnup-dependent grid-to-rod gap combined with the fluid-induced vibration may generate grid-to-rod fretting wear-induced fuel failure for some fuel assemblies in a certain burnup range. The systematic grid-to-rod fretting wear-induced fuel failure occurred at the 16×16 Korean Optimized Fuel Assembly loaded in the 2-loop Westinghouse type plant in Korea. Prior to various tests and some measurements for investigating its root causes, they were assumed to be self-excited fuel assembly vibration caused by hydraulic-unbalanced mixing vane design, excessive cross-flow between fuel assemblies during the transition core, or relatively large grid-to-rod gap formation during in-reactor irradiation that may be caused by excessive initial spring force loss of fresh fuel during a fuel rod loading process and/or a fuel assembly transport to a plant and by excessive cladding creep-down. A wide spectrum of tests and some measurements were performed to find out root cause(s) of the grid-to-rod fretting wear-induced fuel failure. Based on these tests and measurements, it is concluded that the self-excited fuel assembly vibration is the primary root cause, while excessive initial spring force loss during the fuel rod loading process is the second major root cause.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
,