Article ID Journal Published Year Pages File Type
298072 Nuclear Engineering and Design 2010 8 Pages PDF
Abstract

Startup of a natural circulation boiling water reactor (NCBWR) is studied numerically, using a thermal-hydraulic system code RELAP5. A number of numerical experiments are carried out using various power ramps, and a suitable heat-up rate is identified to pressurize the reactor to the desired operating conditions in a reasonable time without considerable void generation in the core. It is observed that the occurrence of flashing in the riser section is unavoidable. Although flashing helps in steam production, the amplitude of flow oscillations induced by flashing is the event of concern, as in the case of the pressure tube type NCBWR studied here. Therefore, the feasibility of a complete single-phase startup is also examined and found not attractive. A new startup procedure, which completely bypasses the unstable two-phase region, is conceptualized, and the method to take the system to the operating condition without encountering flow oscillations is numerically investigated.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,