Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
298417 | Nuclear Engineering and Design | 2009 | 6 Pages |
The pressurizer plays an important role in controlling the pressure of the primary coolant system in pressurized water reactor (PWR) nuclear power plants. An accurate modeling of the pressurizer is needed to determine the pressure response of the primary coolant system, and thus to successfully simulate overall PWR nuclear power plant behavior during transients. The purpose of this study is to develop a pressurizer model, and to assess its pressure transients using the TRACE code version 5.0. The benchmark of the pressurizer model was performed by comparing the simulation results with those from the tests at the Maanshan nuclear power plant. Four start-up tests of the Maanshan nuclear power plant are collected and simulated: (1) turbine trip test from 100% power (Test PAT-50); (2) large-load reduction at 100% power (Test PAT-49); (3) net-load trip at 100% power (Test PAT-51); and (4) net-load trip at 50% power (Test PAT-21). The simulation results show that the predictions of the pressure response are in reasonable agreement with the power plant's start-up tests, and thus the pressurizer model built in this study is successfully verified and validated.