Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
298455 | Nuclear Engineering and Design | 2009 | 14 Pages |
The present study investigates the effect of free surface motion of a fluid on the dynamic behavior of thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of a fluid-filled horizontal cylindrical shell taking into account free surface motion; sloshing. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid/structure interaction problems in horizontal cylindrical shells focusing on the dynamic interaction between a flexible structure and incompressible and inviscid flow. The approach is very general; it allows dynamic analysis of both uniform and non-uniform cylindrical shells and considers the fluid forces and includes the sloshing effect exerted on the structure. The hybrid method developed in this work incorporates a combination of the classic finite element approach and thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is applied to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid heights to find the influence of the fluid on the dynamic responses of the structure. The influence of physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theoretical and experimental, very good agreement is obtained.