Article ID Journal Published Year Pages File Type
298750 Nuclear Engineering and Design 2009 10 Pages PDF
Abstract

Water experiments were carried out for thermal hydraulic aspects of thermal striping in a mixing tee, which has main to branch diameter ratio of 3. Detailed temperature and velocity fields were measured by a movable thermocouple tree and particle image velocimetry. Flow patterns in the tee were classified into three groups; wall jet, deflecting jet, and impinging jet, which had their own temperature fluctuation profiles, depending on a momentum ratio between the main and branch pipes. Non-dimensional power spectrum density (PSD) of temperature fluctuation showed a unique profile, when the momentum ratio was identical. Numerical simulation based on finite difference method showed alternative vortex development, like Karman vortex series, behind the jet from the branch pipe in the wall jet case. The prominent frequency of the temperature fluctuation in the calculation was 0.2 of St number based on the branch pipe diameter and in good agreement with the experimental results. Mixing behavior in the tee was characterized by the relatively large vortex structures defined by the diameters and the velocities in the pipes.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,