Article ID Journal Published Year Pages File Type
298980 Nuclear Engineering and Design 2007 10 Pages PDF
Abstract

Spacer grids in the nuclear fuel rod assembly maintain a constant distance between rods, secure flow passage and prevent the damage of the rod bundle from flow-induced vibration. The mixing vanes attached to the spacer grids generate vortex flows in the subchannels and enhance the heat transfer performance of the rod bundle. Various types of mixing vanes have been developed to produce cross flows between subchannels as well as vortex flows in the subchannels.The shapes of the mixing vane have been improved to generate larger turbulence and cross flow mixing. In the present study, two types of large scale vortex flow (LSVF) mixing vanes and two types of small scale vortex flow (SSVF) mixing vanes are examined. SSVF-single is conventional split type and SSVF-couple is split type with different arraying method. LSVF mixing vane has different geometry and arraying method to make large scale vortex. 17 × 17 rod bundle with eight spans of mixing vanes is simulated using the IBM 690 supercomputer. The FLUENT code and IBM supercomputer is employed to calculate the flow field and heat transfer in the subchannels.Turbulence intensities, maximum surface temperatures of the rod bundle, heat transfer coefficients and pressure drops of the four kinds of mixing vanes are compared. LSVF mixing vanes produced higher turbulence intensity and heat transfer coefficient than SSVF mixing vanes. Consequently, LSVF mixing vane increases the thermal efficiency and safety of the rod bundle.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,