Article ID Journal Published Year Pages File Type
298992 Nuclear Engineering and Design 2008 14 Pages PDF
Abstract

This paper addresses the potential flow-induced vibrations and fretting-wear of helically coiled tubes of the once-through steam generator employed at an integral type nuclear reactor, where the tubes are subjected to liquid cross-flow externally and multi-phase flow internally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code using the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helically coiled tubes with various conditions, a finite element analysis code is used. Based on the results of both the thermal-hydraulic analysis of helically coiled tube steam generator and the modal analysis of the tubes, predictions of turbulence-induced vibration, fluidelastic instability and fretting-wear of the helically coiled tubes are performed. In the predictions, special emphasis is placed on determining the effects of the number of supports, coil diameter and helix pitch on the natural vibration mode, turbulence vibration amplitude, fluidelastic instability and fretting-wear characteristics of the tubes. The results provide the technical information and bases needed by designers and regulatory reviewers for evaluating the design.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,