Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
299047 | Nuclear Engineering and Design | 2008 | 5 Pages |
One of the general methods to evaluate a failure condition is to compare a maximum stress with an allowable stress. A failure condition for a stress is usually applied to a concerned point rather than a concerned section. In an optimization procedure, these stress conditions are applied as constraints. But the ASME code that prescribes its general rules upon the design of a NSSS (nuclear steam supply system) has quite a different view on a failure condition. According to the ASME code Sec. III, a stress linearization should be performed to evaluate a failure condition of a structure. Since a few programs provide a procedure for a stress linearization through a post-processing stage, an extra calculation of the linearized stresses and the derivatives of a linearized stress are conducted to adopt the stress linearization results to an optimization procedure as constraints. In this research, an optimization technique that utilizes the results of a stress linearization as a constraint is proposed. The proposed method was applied to the shape design of a perforated pressure vessel cover.