Article ID Journal Published Year Pages File Type
299087 Nuclear Engineering and Design 2008 10 Pages PDF
Abstract

A Computational Fluid Dynamics (CFD) analysis for a thermal mixing test was performed for 30 s to develop the methodology for a numerical analysis of the thermal mixing between steam and subcooled water and to apply it to Advanced Power Reactor 1400 MWe (APR1400). In the CFD analysis, the steam condensation phenomenon by a direct contact was simulated by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, and a turbulent flow, which are implemented in the CFX4.4. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small local temperature difference was found at some locations. A sensitivity analysis was performed to find the reason of the temperature difference. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distributions and a proper numerical method are selected.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,