Article ID Journal Published Year Pages File Type
299099 Nuclear Engineering and Design 2008 9 Pages PDF
Abstract

In this validation work two turbulence models (k–ɛ and SST model) and two grids (a finer hybrid grid and a tetrahedral coarser grid) are considered in order to model helium release and dispersion. Simulation results are compared against an experiment of jet release phenomena in the Battelle Model Containment facility (BMC), a multi-compartment facility with a total volume of about 560 m3. In the selected test, HYJET Jx7, helium was released into the containment at a speed of 42 m/s over a time of 200 s. Although the k–ɛ model is the most commonly used turbulence model in most Computational Fluid Dynamics (CFD) applications, it does not provide the most accurate predictions for this application. Alternatively the SST turbulence model has been employed giving more accurate results. This investigation provides a further confirmation that the validation of commercial CFD codes is always required in order to select the more suitable physical models and computational grids for each specific application.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,