Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
299152 | Nuclear Engineering and Design | 2006 | 13 Pages |
The present paper is related to the dynamic (seismic) analysis of a naval propulsion ground prototype (land-based) nuclear reactor with fluid–structure interaction modelling. Many numerical methods have been proposed over the past years to take fluid–structure phenomenon into account in various engineering domains, among which nuclear engineering in seismic analysis. The purpose of the present paper is to make a comparative study of these methods on an industrial case, namely the pressure vessel and internals of a nuclear reactor. A simplified model of the pressure vessel and the internal structure is presented; fluid–structure interaction is characterised by added mass, added stiffness and coupling effects. The basic principles of the mathematical techniques for fluid–structure modelling and dynamic methods used in the analysis are first presented and then applied to compute the eigenmodes and the dynamic response of the fluid–structure coupled system with various numerical procedures (quasi-static, spectral and temporal approaches). Numerical results are presented and discussed; fluid–structure interaction effects are highlighted. As a main conclusion, added mass effects are proved to have a significant influence on the dynamic response of the nuclear reactor.