Article ID Journal Published Year Pages File Type
299339 Nuclear Engineering and Design 2007 8 Pages PDF
Abstract

In order to enhance heat transfer in cooling channels of plate-type fuel elements in reactor cores, the experimental research is conducted on the heat transfer and pressure drop in horizontal narrow rectangular channels with mounted longitudinal vortex generators (LVGs) for water flow with Prandtl number Pr = 4–5. The parameters examined were: flow velocity from 0.5 to 3.4 m/s, Reynolds number from 3000 to 20,000, heat flux 43.6 kW/m2, maximum system pressure 1.3 atm, and viscosity ratio from 1.05 to 1.2. It is found that the LVGs could greatly improve the heat transfer rate by 10–45%. Thermal performance is compared under three constraints, i.e., identical mass flow rate (IMF), identical pressure drop (IPD) and identical pumping power (IPP). It is found that the heat transfer performance of channel with LVGs on two sides are better than those on one side. Application of LVGs to plate-type fuel element is a potential technique for next generation advanced nuclear reactors concepts.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , ,