Article ID Journal Published Year Pages File Type
299381 Nuclear Engineering and Design 2007 8 Pages PDF
Abstract

A series of quench tests on hollow cylindrical specimens made of the machinable ceramic, Pyrophyllite, has been performed. The specimens consistently fractured with two diametrically opposite longitudinal cracks. Finite element analysis indicates that the primary crack occurred at the stage when the strain energy of the cylinder reached its maximum during the thermal transient process, while the secondary crack was caused by stress waves generated following the primary crack. This is supported by experimental observation of the time of fracture and the crack morphology. The work reported here helps to shed light on the fracture criterion for brittle cylindrical components under transient thermal and dynamic loadings.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,