Article ID Journal Published Year Pages File Type
299399 Nuclear Engineering and Design 2007 13 Pages PDF
Abstract

Research activities are ongoing worldwide to develop nuclear power plants with a supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, there is still a big deficiency in understanding and prediction of heat transfer in supercritical fluids. In this paper, heat transfer of supercritical water has been investigated in various flow channels using the computational fluid dynamics (CFD) code CFX-5.6 to provide basic knowledge of the heat transfer behaviour and to gather the first experience in the application of CFD codes to heat transfer in supercritical fluids. Three different flow channels are selected, i.e. circular tubes, the sub-channel of a square-array rod bundle and the sub-channel of a triangular-array rod bundle. The effect of mesh structures, turbulence models, as well as flow channel configurations is analysed. Based on the present results, recommendations are made on the application of turbulence models to the heat transfer of supercritical fluids in various flow channels. A new definition for the onset of heat transfer deterioration is proposed. A strong non-uniformity of heat transfer is observed in sub-channel geometries. This non-uniformity has to be taken into account in the design of fuel assemblies of SCWR.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,