Article ID Journal Published Year Pages File Type
3001505 Molecular Metabolism 2016 6 Pages PDF
Abstract

BackgroundThe gut microbiota is associated with several of metabolic diseases, including obesity and type 2 diabetes and affects host physiology through distinct mechanisms. The microbiota produces a vast array of metabolites that signal to host cells in the intestine as well as in more distal organs.Scope of reviewEnteroendocrine cells acts as ‘chemo sensors’ of the intestinal milieu by expressing a large number of receptors, which respond to different metabolites and nutrients, and signal to host by a wide variety of hormones. However, enteroendocrine cells differ along the length of the gut in terms of hormones expressed and receptor repertoire. Also, the microbial ecology and dietary substrates differ along the length of the gut, providing further evidence for unique functions of specific subpopulations among enteroendocrine cells. Here we will review how the gut microbiota interacts with L-cells in the small and large intestine and the resulting effects on the host.Major conclusionsMicrobial metabolites can be sensed differently by specific subpopulations of enteroendocrine cells. Furthermore, hormones such as GLP-1 can have different functions when originating from the small intestine or colon. This article is part of a special issue on microbiota.

Related Topics
Life Sciences Neuroscience Endocrine and Autonomic Systems
Authors
, ,