Article ID Journal Published Year Pages File Type
300836 Renewable Energy 2012 8 Pages PDF
Abstract

Coupled global climate models coarse results have been downscaled to produce future wind power maps for northern Europe. The downscaling method utilizes a global, stretched atmospheric numerical model with sea-surface temperature (SST) as the main forcing. The model has horizontal grid spacing equivalent to about 30 km in the area of interest. As the climate models have often problems with the sea ice cover and storm tracks in vicinity of the sea ice, an alternative SST approach has been used. The SST signal from climate model runs under the A1B scenario has been added to the Era40 reanalysis data set, and used as lower boundary forcing. A 30-year control period (1972–2001) is compared to a future period (2020–2049) of equal length. Four realisations of the future period constitute the ensemble, which the future wind power potential is estimated from.The results show that a weak reduction of wind power production is expected in the future period. The reduction of the power potential is in the range from 2 to 6% in most areas. The spread in the model ensemble is large and consequently the reduction becomes relative small. Regional pockets of increased potential appear in vicinity of high terrain. These results are regarded as uncertain as a little shift in storm tracks will lead to very different mountain shadow effects and alter the picture drastically.

► We have used a stretched numerical model to downscale future climate scenarios, giving the future wind power potential. ► We have adjusted lower boundary conditions with a new approach, making it more realistic. ► We find a slight reduction in the future wind energy potential in northern Europe.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,