Article ID Journal Published Year Pages File Type
300959 Renewable Energy 2012 8 Pages PDF
Abstract

The potentiality of geocooling (i.e. free cooling) with borehole heat exchangers is analysed for low energy office buildings. The borehole heat exchanger field is coupled to a heat pump in winter and to the cold distribution system in summer through a flat plate heat exchanger. The cooling requirement satisfied by a direct heat transfer into the ground through the borehole heat exchangers is so-called geocooling.A dynamic system model has been developed to simulate the building, the emission of thermal energy through thermally activated building systems, the technical installation including the borehole heat exchanger field and the interconnected thermal interactions. Thermal comfort requirements determine the building energy needs and the size of the ground coupled system. A methodology is presented for best system design.Building design, system technical feasibility and limits of the ground coupled system are discussed and result from the analysis of the numerous system simulations. Geocooling potential depends on the quality of the building design and its heat emission. The importance of the ground thermal conductivity and the ground recharge ratio on the system design are highlighted. Simple design sizing keys are proposed for a fast pre-sizing of a borehole field.

► Geocooling potential analysis of boreholes heat exchangers for office buildings. ► Design procedure for system optimisation and identification of key parameters. ► Highlights of temperature losses in the system for heating and geocooling. ► Determination of building designs' suitability for a geocooling solution. ► Definition of simple design rules for a fast pre-sizing of a geocooling system.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,