Article ID Journal Published Year Pages File Type
301012 Renewable Energy 2012 8 Pages PDF
Abstract

Aerodynamic noise is one of the most serious barriers in wind energy development. To develop technologies for wind turbine noise reduction and assessment, noise needs to be predicted precisely with special consideration given to blade flexibility. The numerical tool, WINFAS, which can simulate fluid–structure interaction, consists of three parts: the first part, the Unsteady Vortex Lattice Method, analyzes aerodynamics; the second part, the Nonlinear Composite Beam Theory, analyzes structure; and the third part uses a semi-empirical formula to analyze airfoil self-noise and the Lowson’s formula to analyze turbulence ingestion noise. In this study, using this numerical tool, the change in the noise strength due to blade flexibility was examined. This research showed that elastic blades decreased broadband noise because pitching motion reduced the angle of attack.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,