Article ID Journal Published Year Pages File Type
302192 Renewable Energy 2010 7 Pages PDF
Abstract

Solar Global Horizontal Irradiance (GHI) fluctuates on both short (seconds to hours) and long (days to months) timescales leading to variability of power produced by solar photovoltaic (PV) systems. Under a high PV penetration scenario, fluctuations on short time scales may require a supplementary spinning power source that can be ramped quickly, adding significant external cost to PV operation. In order to examine the smoothing effect of geographically distributed PV sites, GHI timeseries at 5 min resolution at four sites across the state of Colorado were analyzed. GHI at the four sites was found to be correlated due to synchronous changes in the solar zenith angle. However, coherence analysis showed that the sites became uncorrelated on time scales shorter than 3 h, resulting in smoother average output at short time scales. Likewise, extreme ramp rates were eliminated and the spread in ramp rate magnitude was significantly reduced when all four sites were averaged. Nevertheless, even for the averaged output, high frequency fluctuations in PV power output are relatively larger in magnitude than fluctuations expected from wind turbines. Our results allow estimation of the ancillary services required to operate distributed PV sites.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,