Article ID Journal Published Year Pages File Type
3027120 Thrombosis Research 2015 9 Pages PDF
Abstract

•MiR-495 is down-regulated in the plasma of CAD patients compared with controls•MiR-495 inhibits CCL2 expression by directly binding to its 3’ UTR of CCL2 gene•MiR-495 induces the proliferation and inhibits the apoptosis of HUVECs•CCL2 mediates the roles of miR-495 on HUVECs proliferation and apoptosis

IntroductionEndothelium dysfunction plays a critical role in atherosclerosis. MicroRNAs are endogenous non-coding RNAs that suppress gene expression by binding to the 3’ untranslated regions of target genes. MiR-495 can regulate the proliferation and apoptosis of cancer cells, however, the roles of miR-495 in endothelial cells (ECs) remain unclear. Therefore, this study aims to investigate the roles and mechanisms of miR-495 on ECs proliferation and apoptosis.Materials and MethodsMiR-495 and CCL2 expressions were examined using quantitative RT-PCR, ELISA assay and western blot. Bioinformatics analysis and luciferase reporter assay were used to examine the regulatory relationship between miR-495 and CCL2. CCK8 assay, BrdU incorporation assay and flow cytometry were used to analyze the roles of miR-495 and CCL2 on the proliferation of human umbilical vein endothelial cells (HUVECs). The effects of miR-495 and CCL2 on HUVECs apoptosis were examined by tunnel staining and western blot.ResultsMiR-495 was down-regulated in patients with coronary artery disease compared with healthy controls. CCL2 was a novel target gene of miR-495. MiR-495 significantly promoted HUVECs proliferation by altering cell cycle distribution, and it also inhibited HUVECs apoptosis by affecting the expression of cleaved caspase 3. Effects of miR-495 on HUVECs proliferation and apoptosis were significantly reversed by overexpression of CCL2.ConclusionsMiR-495 could affect HUVECs proliferation and apoptosis by directly targeting CCL2. This is the first report to disclose the roles and mechanisms of miR-495 on HUVECs proliferation and apoptosis, which may provide a theoretical basis for clarifying the mechanisms of atherosclerosis.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , , ,