Article ID Journal Published Year Pages File Type
302753 Renewable Energy 2008 10 Pages PDF
Abstract

Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. As an alternative, biodegradable, and renewable fuel, ethanol is receiving increasing attention. Therefore, in this study, influence of injection timing on the exhaust emission of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine has an original injection timing 27° CA BTDC. The tests were performed at five different injection timings (21°, 24°, 27°, 30°, and 33° CA BTDC) by changing the thickness of advance shim. The experimental test results showed that NOx and CO2 emissions increased as CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing, at the retarded injection timings (21° and 24° CA BTDC), NOx and CO2 emissions increased, and unburned HC and CO emissions decreased for all test conditions. On the other hand, with the advanced injection timings (30° and 33° CA BTDC), HC and CO emissions diminished, and NOx and CO2 emissions boosted for all test conditions.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,