Article ID Journal Published Year Pages File Type
302896 Renewable Energy 2007 16 Pages PDF
Abstract

An open desiccant cooling process is presented and applied to ventilation and recirculation modes of the system operation. The cooling system consists of a desiccant wheel, a rotary regenerator, two evaporative coolers, and a heating unit. Certain ideal operating characteristics based primarily on the first law of thermodynamics are assumed for each component. The system with indoor and outdoor ARI conditions has a thermal coefficient of performance (COP) of 1.17 in ventilation mode and 1.28 in recirculation mode. A second law analysis is also performed and at ARI conditions, the reversible COP of the system is determined to be 2.63 in ventilation mode and 3.04 in recirculation mode. Variation of the first and second law based COP terms and cooling load with respect to ambient temperature and relative humidity are investigated in both modes of the system operation. The results of the analysis provide an upper limit for the system performance at various ambient conditions and may serve as a model to which actual desiccant cooling systems may be compared. As an additional study, a non-ideal system operation is considered and it is determined that both the COP and cooling load decrease with increasing ambient temperature and relative humidity, and they approach zero at high values of ambient temperature and humidity.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,