Article ID Journal Published Year Pages File Type
303073 Renewable Energy 2006 19 Pages PDF
Abstract

In this paper, heat transfer and flow in a lean-to passive solar greenhouse has been studied. A mathematical model based on energy equilibrium and a one-dimensional mathematical model for the unsaturated porous medium have been founded and developed to predict the temperature and moisture content in soil and the enclosed air temperature in the greenhouse. On the condition that plant and massive wall is neglected, the air is mainly heated by the soil surface in the greenhouse, which absorbs the incident solar radiation. With increase in depth, the variation of the temperature and moisture content in soil decreases on account of ambient, and the appearance of the peak temperature in soil postpone. Solar radiation absorber, heat storage and insulation are the main effects of the north massive wall on greenhouse, which is influenced by the structure and the material. The specific heat capacity and thermal conductivity of wall material have a remarkable effect on the north wall temperature. The build-up north wall with thermal insulation material may be chosen for greenhouse. The temperature distribution and gas flow in greenhouse is influenced by the cover material of the inside surface of the north wall and the inclined angle of greenhouse roof. All results should be taken into account for a better design and run of a greenhouse.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,