Article ID Journal Published Year Pages File Type
3035814 Autonomic Neuroscience 2007 8 Pages PDF
Abstract

In the cat, vagal postganglionic controls of heart rate, atrio-ventricular (AV) conduction and left ventricular contractility are mediated by three separate intrinsic cardiac ganglia, the sinoatrial (SA), AV and cranioventricular (CV) ganglia, respectively. The vagal preganglionic neurons (VPNs) that project to these ganglia are located in the ventrolateral nucleus ambiguus (NA-VL). We have previously shown that the VPNs projecting to the SA, AV and CV ganglia are distinct from one another. We have also demonstrated that neuropeptide Y-immunoreactive (NPY-IR) axon terminals synapse upon VPNs projecting to the SA ganglion. In the present study, we test the hypothesis that those VPNs projecting to the AV ganglion (negative dromotropic VPNs) and those projecting to the CV ganglion (negative inotropic VPNs) are innervated by NPY-IR terminals in NA-VL. A retrograde tracer was injected into the AV or CV ganglion of the cat, and the brains subsequently processed for visualization of tracer and the immunocytochemical visualization of NPY by dual labeling electron-microscopic methods. We observed that 11 ± 5% of all axodendritic synapses and 8 ± 6% of all axosomatic synapses upon negative inotropic VPNs were NPY-IR. Furthermore, 19 ± 14% of all axodendritic synapses upon negative dromotropic VPNs were NPY-IR. A few NPY-IR axosomatic synapses upon negative dromotropic neurons were also observed. NPY-IR terminals in NA-VL occasionally formed axosomatic synapses with NPY-IR neurons and axoaxonic synapses with unlabeled terminals. These results suggest that central NPY afferents to the NA-VL modulate the vagal preganglionic control of AV conduction and left ventricular contractility.

Keywords
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , ,