Article ID Journal Published Year Pages File Type
304272 Soil Dynamics and Earthquake Engineering 2013 13 Pages PDF
Abstract

With the spread of performance-based design concepts in geotechnical earthquake engineering, conducting a practical and accurate analysis for estimating the liquefaction-induced ground deformation has become important. However, there is a difficulty in setting relevant parameters of liquefied soil that would be employed in the analysis because experimental investigations on large deformation behaviour of liquefied soil are still limited. Therefore, in order to investigate the liquefaction-induced ground deformation characteristics, a series of undrained cyclic torsional shear tests was performed by using a modified torsional shear apparatus that is capable of achieving double amplitude shear strain up to about 100%. The tested materials were saturated Toyoura sand, two kinds of in-situ frozen samples having different geological ages and their reconstituted samples. The in-situ samples were retrieved from Pleistocene deposits. In all the undrained cyclic torsional shear tests, cyclic mobility was observed and the double amplitude shear strain approached 100%, irrespective of the different initial conditions of the specimens. A limiting value of double amplitude shear strain to cause strain localization, which would be linked to the maximum possible liquefaction-induced ground deformation, was evaluated based on the change in the deviator stress during the undrained cyclic torsional loading. The limiting value was found to increase with decrease in initial values of small strain shear moduli which were evaluated by dynamic measurement. In addition, we measured tangent shear moduli at the limiting state as well as after strain localization, and evaluated a reduction ratio of shear moduli due to liquefaction, which would be employed in the ALID framework. These characteristics measured by such large strain liquefaction tests would be useful in estimating the maximum liquefaction-induced ground deformation.

► Large strain liquefaction tests were performed by modified torsional shear apparatus. ► Tested materials were Toyoura sand and two kinds of in-situ frozen samples. ► Limiting strain to cause strain localization was evaluated. ► We evaluated a reduction of shear moduli by liquefaction employed in ALID framework.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,