Article ID Journal Published Year Pages File Type
3044355 Clinical Neurophysiology 2013 15 Pages PDF
Abstract

Different kinds of challenge can alter spontaneous ongoing electroencephalographic (EEG) rhythms in animal models, thus providing paradigms to evaluate treatment effects in drug discovery. The effects of challenges represented by pharmacological agents, hypoxia, sleep deprivation and transcranial magnetic stimulation (TMS) on EEG rhythms are here reviewed to build a knowledge platform for innovative translational models for drug discovery in Alzheimer’s disease (AD). It has been reported that antagonists of cholinergic neurotransmission cause synchronisation of spontaneous ongoing EEG rhythms in terms of enhanced power of EEG low frequencies and decreased power of EEG high frequencies. Acetylcholinesterase inhibitors and serotonergic drugs may restore a normal pattern of EEG desynchronisation. Sleep deprivation and hypoxia challenges have also been reported to elicit abnormal synchronisation of spontaneous ongoing EEG rhythms in rodents. The feasibility and reproducibility of TMS have been demonstrated in rodents but information on a consistent modulation of EEG after TMS manipulation is very limited. Transgenic mice over-expressing human amyloid precursor protein complementary DNAs (cDNAs) harbouring the ‘Swedish’ mutation and PS-1 cDNAs harbouring the A264E mutation, which recapitulate some of the pathological features of AD, exhibit alterations of spontaneous ongoing EEG rhythms at several low and high frequencies. This does not appear, however, to be a consequence of beta-amyloid deposition in the brain. The present review provides a critical evaluation of changes of spontaneous ongoing EEG rhythms due to the experimental manipulations described above, in order to stimulate the promote more adherent models fitting dynamics in humans.

► Analysis of electroencephalographic (EEG) rhythms in animal models of deficit and drug-induced EEG normalisation provides a useful approach to drug discovery. ► Effects on EEG rhythms of challenges represented by administration of pharmacological agents, hypoxia, sleep deprivation and transcranial magnetic stimulation provide a knowledge platform for preclinical investigation in Alzheimer’s disease. ► Expected changes of EEG rhythms due to experimental manipulations can promote preclinical innovative translational models fitting dynamics in humans.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , , , , , , ,