Article ID Journal Published Year Pages File Type
3045620 Clinical Neurophysiology 2012 15 Pages PDF
Abstract

Recent advance in non-invasive techniques including electrophysiology and functional neuroimaging has enabled investigation of control mechanism of voluntary movements and pathophysiology of involuntary movements in human. Epicortical recording with subdural electrodes in epilepsy patients complemented the findings obtained by the non-invasive techniques. Before self-initiated simple movement, activation occurs first in the pre-supplementary motor area (pre-SMA) and SMA proper bilaterally with some somatotopic organisation, and the lateral premotor area (PMA) and primary motor cortex (M1) mainly contralateral to the movement with precise somatotopic organisation. Functional connectivity among cortical areas has been disclosed by cortico-cortical coherence, cortico-cortical evoked potential, and functional MRI. Cortical activities associated with involuntary movements have been studied by jerk-locked back averaging and cortico-muscular coherence. Application of transcranial magnetic stimulation helped clarifying the state of excitability and inhibition in M1. The sensorimotor cortex (S1-M1) was shown to play an important role in generation of cortical myoclonus, essential tremor, Parkinson tremor and focal dystonia. Cortical myoclonus is actively driven by S1-M1 while essential tremor and Parkinson tremor are mediated by S1-M1. ‘Negative motor areas’ at PMA and pre-SMA and ‘inhibitory motor areas’ at peri-rolandic cortex might be involved in the control of voluntary movement and generation of negative involuntary movements, respectively.

► Recent advance in clinical neurophysiology and functional neuroimaging has contributed greatly to the understanding of the control mechanism of voluntary movements and pathophysiology of involuntary movements. ► The sensorimotor cortex, the origin of the final common pathway for voluntary movement, is involved in generation of involuntary movements, especially cortical myoclonus, tremor and focal dystonia. ► Negative or inhibitory motor phenomena are important for both voluntary and involuntary movements.

Related Topics
Life Sciences Neuroscience Neurology
Authors
,