Article ID Journal Published Year Pages File Type
304676 Soil Dynamics and Earthquake Engineering 2011 11 Pages PDF
Abstract

A rigorous mathematical formulation is presented for the analysis of a thin cylindrical shell embedded in a transversely isotropic half-space under vertically incident P-wave excitation. By virtue of a set of ring-loads Green's functions for the shell and a group of dynamic fundamental solutions for the half-space under arbitrary interfacial dynamic loads, the problem is shown to be reducible to a pair of Fredholm integral equations. By utilizing an adaptive-gradient family capable of capturing regular-to-singular solution transitions smoothly, an accurate numerical procedure is developed. To assess the effect of material anisotropy on the dynamic load-transfer process, a set of comprehensive numerical results presented for various material and geometrical conditions. The accuracy of the proposed numerical scheme is confirmed by its comparison with a benchmark solution for the corresponding isotropic problem.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , ,