Article ID Journal Published Year Pages File Type
3047616 Clinical Neurophysiology 2007 11 Pages PDF
Abstract

Magnetoencephalography (MEG) is used twofold for presurgical evaluation of patients with medically intractable partial epilepsy; to identify epileptogenic focus and to investigate functions of cortical areas at or near the epileptogenic focus or structural lesion. For the precise localization of the current source of epileptic discharge, the question as to whether MEG is superior to electroencephalography (EEG) is often addressed. To answer this question, so many factors, both biologically and technically related, have to be taken into consideration. The biological factors include the magnitude of epileptic discharge, its distribution over the cortex, depth of its source from the head surface, and the proportion of large pyramidal neurons tangentially oriented with respect to the head surface within the cortical area. The technical factors include the quality of the recording instrument such as the number of sensors and the use of gradiometer vs. magnetometer, the employed method of source analysis, and availability of experts in each institute. As far as the importance of ictal recording is emphasized, long-term video/EEG monitoring is of utmost importance. Thus, it is concluded that, once the epileptogenic focus is identified by the video/EEG monitoring, then MEG is superior to EEG in order to precisely localize the current source of the interictal epileptic discharge. Another question often addressed is whether MEG can replace the invasive intracranial EEG recording or not. In addition to the above-described factors, different coverage of the cortical areas by MEG vs. invasive intracranial EEG recording has to be taken into account to explain some of the recent reports related to this question. MEG can be effectively applied to the investigation of cortical functions near the epileptogenic focus. It is especially so when combined with other non-invasive studies like functional magnetic resonance imaging (fMRI). In addition to the source analysis of magnetic fields related to various events or tasks, analysis of the task-related change of rhythmic cortical oscillations is a useful tool for studying higher cortical functions such as language in the presurgical evaluation.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , ,