Article ID Journal Published Year Pages File Type
304945 Soil Dynamics and Earthquake Engineering 2009 11 Pages PDF
Abstract

A number of slope failures during the 2004 Niigataken Chuetsu earthquake were investigated, revealing that the travel distance becomes longer as the slope gets gentler and the failed soil mass gets larger. An energy-based approach, proposed in previous research to evaluate the travel distance of failed slopes, is modified by adding the model test results and introducing a simple evaluation method. The energy approach is then applied to a number of slopes failed during the earthquake to back-calculate mobilized friction coefficients, revealing their strong dependency on initial slope inclinations. The friction coefficient was found to be smaller than the initial slope inclination for gentler slopes, indicating that the failed soil mass tends to accelerate. In contrast, that for steeper slopes was higher than initial slope inclination. The friction coefficient was found to decrease with increasing volume of failed slope, which is quite consistent with previous case studies including large non-seismic landslides.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,