Article ID Journal Published Year Pages File Type
304980 Soil Dynamics and Earthquake Engineering 2008 19 Pages PDF
Abstract

A proposed method for mitigating ground-borne vibration generated by high-speed trains is the usage of rubber-modified asphalt concrete as a ballast mat material. To gauge this material's influence in vibration control, a dynamic finite element code that models distinct damping properties in a large, nonhomogenous system was created. A linear hysteretic damping model is used to capture the dissipative mechanisms of each material; frequency domain substructuring is used for computational efficiency. Vibratory responses utilizing different ballast mat materials in a high-speed rail foundation are compared. It is shown that rubber-modified asphalt concrete results in a general reduction of motion, particularly in directions horizontally parallel and perpendicular to the train's passage. The described modeling procedure may be used for any dynamic analysis where the preservation of material damping characteristics is desired.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,