Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3050025 | Epilepsy & Behavior | 2009 | 10 Pages |
Abstract
The incidence of epilepsy is significantly higher in children than adults. When faced with the diagnosis of epilepsy, parents have many questions regarding cause, treatment, and prognosis. Although the majority of children with epilepsy have an excellent prognosis and respond well to therapy, some children are refractory to therapy and suffer from cognitive decline. Animal models are now providing insights into the mechanisms responsible for the high incidence of seizures during development and age-dependent seizure-induced damage. One of the causes of the increased susceptibility of the young brain to seizures is the depolarizing effects of GABA secondary to high intracellular concentrations of chloride in young neurons. Although cell loss is not a feature of seizures in the young brain, recurrent seizures do result in aberrant sprouting of mossy fibers, reduce neurogenesis, and alter excitatory and inhibitory neurotransmitter receptor structure and function. Behavioral consequences of early-life seizures include impaired spatial cognition, which now can be assessed using single-cell recordings from the hippocampus. Antiepileptic drugs have had a tremendous positive influence in epilepsy management, although there are now a number of studies demonstrating that antiepileptic drugs at therapeutic concentrations can impair cognition and result in increased apoptosis. While clinical judgment and experience are paramount when discussing the consequences of seizures and their treatment, awareness of studies from animals can provide the clinician with guidance in addressing these important issues with parents.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Gregory L. Holmes,