Article ID Journal Published Year Pages File Type
305094 Soil Dynamics and Earthquake Engineering 2007 10 Pages PDF
Abstract

A simple displacement-type block model is proposed to compute the compression–load–time response of an idealized seismic buffer placed against a rigid wall and used to attenuate earthquake-induced dynamic loads. The seismic buffer is modelled as a linear elastic material and the soil wedge shear surface by a stress-dependent linear spring. The model is shown to capture the trends observed in four physical reduced-scale model shaking table tests carried out with similar boundary conditions up to a base excitation level of about 0.7g. In most cases, quantitative predictions are in reasonable agreement with physical test results. The model is simple and provides a possible framework for the development of advanced models that can accommodate more complex constitutive laws for the component materials and a wider range of problem geometry.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , ,