Article ID Journal Published Year Pages File Type
305125 Soil Dynamics and Earthquake Engineering 2007 15 Pages PDF
Abstract

Three-dimensional time-harmonic response of a poroelastic half space subjected to an arbitrary buried loading is investigated. The analysis starts with the field equations in cylindrical coordinates based on Biot's general theory of poroelasticity. General solutions for the displacements are first derived using the Fourier expansions and Hankel integral transform with respect to the circumferential and radial coordinates, respectively. The transformed-domain solutions are obtained in explicit form. The physical-domain displacements and stress components are then obtained numerically by inverse integral transform. Comparisons illustrating the accuracy of the developed approach are made with existing solutions for an elastic half space, which is reduced directly from the general solution developed in the paper. Numerical results are presented for the displacements of a saturated soil subjected to a horizontal internal excitation.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,