Article ID Journal Published Year Pages File Type
305160 Soil Dynamics and Earthquake Engineering 2008 16 Pages PDF
Abstract

The experimental results for the mechanical response of sand (at different levels of saturation with water) under shock-loading conditions generated by researchers at Cavendish [Bragov AM, Lomunov AK, Sergeichev IV, Tsembelis K, Proud WG. The determination of physicomechanical properties of soft soils from medium to high strain rates, November 2005, in preparation; Chapman DJ, Tsembelis K, Proud WG. The behavior of water saturated sand under shock-loading. In: Proceedings of the 2006 SEM annual conference and exposition on experimental and applied mechanics, vol. 2, 2006.p.834–40] are used to parameterize our recently developed material model for sand [Grujicic M, Pandurangan B, Cheeseman B. The effect of degree of saturation of sand on detonation phenomena associated with shallow-buried and ground-laid mines. J Shock Vib 2006;13:41–61]. The model was incorporated into a general-purpose non-linear dynamics simulation program to carry out a number of simulation analyses pertaining to the detonation of a landmine buried in sand and to the interactions of the detonation products, mine fragments and sand ejecta with various targets. A comparison of the computed results with their experimental counterparts revealed a somewhat improved agreement with the experimental results in the case of the present model as compared to the agreement between the widely used porous-material/compaction model for sand and the experiments.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , , , , ,