Article ID Journal Published Year Pages File Type
3052332 Epilepsy Research 2012 13 Pages PDF
Abstract

SummaryHypoxia regulates neuronal ion channels, sometimes resulting in seizures. We evaluated the effects of brief sustained hypoxia (1% O2, 4 h) on voltage-gated calcium channels (VGCCs) in cultured rat primary cortical neurons. High-voltage activated (HVA) Ca2+ currents were acquired immediately after hypoxic exposure or after 48 h recovery in 95% air/5% CO2. Maximal Ca2+ current density increased 1.5-fold immediately after hypoxia, but reverted to baseline after 48 h normoxia. This enhancement was primarily due to an increase in L-type VGCC activity, since nimodipine-insensitive residual Ca2+ currents were unchanged. The half-maximal potentials of activation and steady-state inactivation were unchanged. The calcineurin inhibitors FK-506 (in the recording pipette) or cyclosporine A (during hypoxia) prevented the post-hypoxic increase in HVA Ca2+ currents, while rapamycin and okadaic acid did not. L-type VGCCs were the source of Ca2+ for calcineurin activation, as nimodipine during hypoxia prevented post-hypoxic enhancement. Hypoxia transiently potentiated L-type VGCC currents via calcineurin, suggesting a positive feedback loop to amplify neuronal calcium signaling that may contribute to seizure generation.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , ,