Article ID Journal Published Year Pages File Type
3055648 Experimental Neurology 2012 10 Pages PDF
Abstract

After spinal cord injury, proteoglycans with growth-inhibitory glycosaminoglycan (GAG-) side chains in scar tissue limit spontaneous axonal sprouting/regeneration. Interventions that reduce scar-related inhibition facilitate an axonal growth response and possibly plasticity-based spinal cord repair. Xylosyltransferase-1 (XT-1) is the enzyme that initiates GAG-chain formation. We investigated whether intravenous administration of a deoxyribozyme (DNA enzyme) to XT-1 mRNA (DNAXT-1as) would elicit plasticity after a clinically relevant contusion of the spinal cord in adult rats. Our data showed that systemic DNAXT-1as administration resulted in a significant increase in sensorimotor function and serotonergic axon presence caudal to the injury. DNAXT1as treatment did not cause pathological or toxicological side effects. Importantly, intravenous delivery of DNAXT-1as did not exacerbate contusion-induced neuropathic pain. Collectively, our data demonstrate that DNAXT-1as is a safe neurotherapeutic, which holds promise to become an integral component of therapies that aim to improve the quality of life of persons with spinal cord injury.

► No toxicological and pathological side effects. ► Significant behavioral improvement. ► Enhanced axonal plasticity. ► No effect on neuropathic pain.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , ,