Article ID Journal Published Year Pages File Type
3057098 Experimental Neurology 2007 10 Pages PDF
Abstract

Circumstantial evidence has suggested that activated microglia may be associated with the pathogenesis of depression. Pro-inflammatory cytokines may also be involved. Therefore, we examined the effects of various types of antidepressants, as well as the mood-stabilizer lithium chloride, on interferon-γ (IFN-γ)-induced microglial production of the pro-inflammatory mediators interleukin-6 (IL-6) and nitric oxide (NO). Treatment of the murine microglial 6-3 cells with 100 U/ml of IFN-γ resulted in an eightfold increase in IL-6 and a tenfold increase in NO into the culture medium. Pretreatment with the selective serotonin reuptake inhibitor fluvoxamine, the relatively selective noradrenaline reuptake inhibitor reboxetine, or the non-selective monoaminergic reuptake inhibitor imipramine, significantly inhibited IL-6 and NO production in a dose-dependent manner. These inhibitions were reversed significantly by SQ 22536, a cyclic adenosine monophosphate (cAMP) inhibitor, and, except for reboxetine, by the protein kinase A (PKA) inhibitor Rp-adenosine3′,5′-cyclic monophosphorothioate triethylammonium salt (Rp-3′,5′-cAMPS). Lithium chloride, which is believed to act by inhibiting the calcium-dependent release of noradrenaline, had a different spectrum of action on microglial 6-3 cells. It enhanced IFN-γ-stimulated IL-6 production and inhibited NO production. The inhibitory effect of lithium chloride was not reversed by either SQ 22536 or Rp-3′,5′-cAMPS. These results suggest that antidepressants have inhibitory effects on IFN-γ-activated microglia and these effects are, at least partially, mediated by the cAMP-dependent PKA pathway. On the other hand, the mood stabilizer and anti-manic agent lithium chloride has mixed effects on IFN-γ-induced microglial activation.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , ,