Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3059403 | Journal of Clinical Neuroscience | 2015 | 6 Pages |
Autocrine platelet derived growth factor-BB (PDGF-BB) and cerebrospinal fluid, which also contains PDGF, stimulate proliferation of leptomeningeal and meningioma cells, in part, by activation of the Raf-1-MEK-1-MAPK pathway. The negative regulators of this activation are not known. However, PDGF receptors and p44/42 MAPK are regulated, in part, by mitogen activated kinase phosphatase 3 (MKP-3) and Src homology carboxyl terminus protein (SHP-2). Six fetal and one adult human leptomeninges specimens and 22 meningiomas were evaluated for MKP-3, SHP-2, and phospho-SHP-2 as well as activation/phosphorylation of MEK1/2, p44/42 MAPK, Akt and signal transducer and activator of transcription 3 (STAT3) by western blot and MKP3 expression by polymerase chain reaction. PDGF-BB and cerebrospinal fluid effects on these phosphatases and signaling were also studied in vitro. MKP-3 and phospho-p44/42 MAPK were detected in all or six of seven leptomeninges, respectively. MKP-3 was detected in six of eight World Health Organization grade I and II meningiomas. Three of four grade I and five of five grade II with no or low MKP-3 had high levels of phospho-p44/42MAPK. MKP3 was not detected in four of six grade III meningiomas. These had high levels of phospho-p44/42MAPK. SHP2 was found in all leptomeninges and meningiomas while phospho-SHP-2 was found in 11 to 33% of grade I–III meningiomas. Reduced MKP-3 may facilitate PDGF-BB autocrine and paracrine mitogenic effects in a subpopulation of higher grade meningiomas by increasing phospho-p44/42 MAPK.