Article ID Journal Published Year Pages File Type
306466 Soil and Tillage Research 2009 13 Pages PDF
Abstract

The concept of degree of compactness (DC), referred to as field bulk density (BD) as a percentage of a reference bulk density (BDref), was developed to characterize compactness of soil frequently disturbed, but for undisturbed soil such as under no-tillage critical degree of compactness values have not been tested. The objective of this study was to compare methods to determine BDref and limits of DC and BD for plant growth under no-tillage in subtropical soils. Data from the literature and other databases were used to establish relationships between BD and clay or clay plus silt content, and between DC and macroporosity and yield of crops under no-tillage in subtropical Brazil. Data of BDref reached by the soil Proctor test on disturbed soil samples, by uniaxial compression with loads of 200 kPa on disturbed and undisturbed soil samples, and 400, 800 and 1600 kPa on undisturbed soil samples, were used. Also, comparisons were made with critical bulk density based on the least limiting water range (BDc LLWR) and on observed root and/or yield restriction in the field (BDc Rest). Using vertical uniaxial compression with a load of 200 kPa on disturbed or undisturbed samples generates low BDref and high DC-values. The standard Proctor test generates higher BDref-values, which are similar to those in a uniaxial test with a load of 1600 kPa for soils with low clay content but lower for soils with high clay content. The BDc LLWR does not necessarily restrict root growth or crop yield under no-tillage, since field investigations led to higher BDc Rest-values. A uniaxial load greater than 800 kPa is promising to determine BDref for no-tillage soils. The BDref is highly correlated to the clay content and thus pedotransfer functions may be established to estimate the former based on the latter. Soil ecological properties are affected before compaction restricts plant growth and yield. The DC is an efficient parameter to identify soil compaction affecting crops. The effect of compaction on ecological properties must also be further considered.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,