Article ID Journal Published Year Pages File Type
306656 Soil and Tillage Research 2007 11 Pages PDF
Abstract

Increasing importance has been placed on the use of agricultural soils for the mitigation of atmospheric CO2 through sequestration of soil C. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, little information is available on C sequestration, C content in different aggregate size fractions and soil water transmission properties (infiltration and saturated hydraulic conductivity) as affected by long-term manure addition. We analyzed results of an 8-year experiment, initiated in 1995–1996 on a silty clay loam soil, to determine the influence of fertilizer and fertilizer + farmyard manure (FYM) application on those important soil properties. The overall increase in soil organic C (SOC) content in the 0–45 cm soil depth in NPK + FYM treatment as compared to NPK and control treatments was 11.0 and 13.9 Mg C ha−1 at the end of 8 years, respectively. Application of FYM significantly reduced soil bulk density and increased mean weight diameter (MWD) and SOC contents in different aggregate size fractions. Soil organic C content in macroaggregates was greater than in microaggregates. The response of SOC content to FYM application was dependent upon inorganic fertilization and more upon balanced application of NPK than N only. Steady state infiltration rate under NPK + FYM (1.98 cm h−1) was higher than under unfertilized (0.72 cm h−1) and NPK (1.2 cm h−1). Soil water sorptivity (calculated from Philip's equation) under NPK + FYM (1.06 cm min−0.5) was higher than under NPK (0.61 cm min−0.5). We conclude that hill farmers in northern India should be encouraged to use FYM along with chemical fertilizers to increase SOC content and improve soil physical properties.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,