Article ID Journal Published Year Pages File Type
306884 Soil and Tillage Research 2006 11 Pages PDF
Abstract

In the humid Pampas of Argentina soybean is cultivated in different soil types, which were changed from conventional- to zero tillage systems in the last decade. Little is known about the response of soybean roots to these different soil physical environments. Pasture, and conventionally- and zero-tilled field lots cropped to soybean (R1 and R2 ontogenic stages) were sampled in February–March 2001 in a sandy clay loam and two silty clay loam Mollisols, and in a clayey Vertisol. In the 0–0.05 m layer of conventionally- and zero-tilled lots soil organic carbon represented 53–72% of that in pasture lots, and showed an incipient recovery after 4–11 years of continuous zero tillage. Soil aggregate stability was 10.1–46.8% lower in conventionally-tilled than in pasture lots, and recovered completely in zero-tilled lots. Soil relative compaction ranged 60.8–83.6%, which was below the threshold limit for crop yields (>90%). In change, soil porosity >50 μm ranged 0.91–5.09% soil volume, well below the minimum critical limit for root aeration and elongation (>10%, v/v). The threshold of soil resistance (about 2–3 MPa) was only over passed in an induced plough pan in the conventionally-tilled Bragado soil (5.9 MPa), and in the conventionally- and zero-tilled Ramallo soils (3.7–4.2 MPa, respectively). However, neither the low macroporosity nor the high soil resistances impeded soybean roots growth in any site. According to a fitted polynomial function, root abundance was negatively related to clay content in the subsoil (R2 = 0.84, P < 0.001). Soybean roots were only abundant in the subsoil of the sandy clay loam Mollisol, which had <350 g kg−1 clay. Results show that subsoil properties, and not tillage systems, were the primary effect of root growth of soybean.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,