Article ID Journal Published Year Pages File Type
3070117 Neurobiology of Disease 2009 16 Pages PDF
Abstract

Absence epilepsy (AE) in humans and the genetic AE model in WAG/Rij rats are both associated with abnormalities in sleep architecture that suggest insufficiency of the sleep-promoting mechanisms. In this study we compared the functionality of sleep-active neuronal groups within two well-established sleep-promoting sites, the ventrolateral and median preoptic nuclei (VLPO and MnPN, respectively), in WAG/Rij and control rats. Neuronal activity was assessed using c-Fos immunoreactivity and chronic single-unit recording techniques. We found that WAG/Rij rats exhibited a lack of sleep-associated c-Fos activation of GABAergic MnPN and VLPO neurons, a lower percentage of MnPN and VLPO cells increasing discharge during sleep and reduced firing rates of MnPN sleep-active neurons, compared to non-epileptic rats. The role of sleep-promoting mechanisms in pathogenesis of absence seizures was assessed in non-epileptic rats using electrical stimulation and chemical manipulations restricted to the MnPN. We found that fractional activation of the sleep-promoting system in waking was sufficient to elicit absence-like seizures. Given that reciprocally interrelated sleep-promoting and arousal neuronal groups control thalamocortical excitability, we hypothesize that malfunctioning of sleep-promoting system results in impaired ascending control over thalamocortical rhythmogenic mechanisms during wake–sleep transitions thus favoring aberrant thalamocortical oscillations. Our findings suggest a pathological basis for AE-associated sleep abnormalities and a mechanism underlying association of absence seizures with wake–sleep transitions.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , ,