Article ID Journal Published Year Pages File Type
3070754 Neurobiology of Disease 2007 11 Pages PDF
Abstract

Oxidative stress, protein misfolding, protein complex formation, and detergent insolubility are biochemical features of Alzheimer’s disease (AD). We tested the cause-and-effect relationships among these using MC65 human neuroblastoma cells that exhibit toxicity upon conditional expression of carboxy-terminal fragments (CTFs) of the human amyloid precursor protein (APP). Treatments with three different antioxidants (α-tocopherol, N-acetyl cysteine, and α-lipoic acid) or three different compounds (glycerol, trimethylamine-N-oxide, and 4-phenylbutyric acid) that have been described to have a “chemical chaperone” function in promoting protein folding all had a protective effect on MC65 cells and decreased markers of oxidative damage and accumulation of high molecular weight amyloid (A) β-immunoreactive (IR) species. However, chaperones partially reduced detergent insolubility of the remaining Aβ-IR species, while antioxidants did not. These results suggest that protein misfolding associated with overexpression of APP CTFs promotes oxidative stress and cytotoxicity and contributes to formation of detergent-insoluble species that appear unrelated to cytotoxicity.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , , ,