Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3070828 | Neurobiology of Disease | 2006 | 13 Pages |
Research on spinal cord trauma requires models reflecting the contusion mechanisms encountered in clinical situation. The aim of this study was to develop in the adult rat a reproducible model of upper cervical spinal cord contusion inducing persistent unilateral diaphragm deficit. After dura and pia matter removal, weight drop and compression were targeted at the ventro-lateral funiculi which contain the bulbospinal descending respiratory pathways that command the phrenic motoneurons innervating the diaphragm. At 7 days post-injury, the left diaphragm activity recorded in contused rats (27.4 ± 5.1% of the contralateral activity) was significantly lower than in the sham group (97.6 ± 1.2%). This respiratory deficit still persisted 1 month later. Histology showed a reproducible left C2-lateralized lesion that involved both white and gray matter including the ventro-lateral funiculi. This C2 contusion model provides a basis for testing both regenerative and neuroprotective strategies aimed at improving functional respiratory recovery after spinal cord trauma.